44214 measured reflections

 $R_{\rm int} = 0.027$

11860 independent reflections

9771 reflections with $I > 2\sigma(I)$

of

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

11-[(E)-Benzylidene]-14-hydroxy-8phenyl-3,13-diazaheptacyclo[13.7.1.- $1^{9,13}$, $0^{2,9}$, $0^{2,14}$, $0^{3,7}$, $0^{19,23}$ itetracosa-1(22),15,17,19(23),20-pentaen-10-one

Raju Suresh Kumar,^a Hasnah Osman,^a‡ Aisyah Saad Abdul Rahim,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 22 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; disorder in main residue; R factor = 0.046; wR factor = 0.145; data-to-parameter ratio = 32.4

In the title compound, $C_{35}H_{30}N_2O_2$, the piperidine ring adopts a chair conformation and the pyrrolidine ring adopts an envelope conformation. The naphthalene ring makes dihedral angles of 24.56 (3) and 36.13 (4) $^{\circ}$ with the terminal phenyl rings. The dihedral angle between the two terminal phenyl rings is 55.27 $(5)^{\circ}$. One of the C atoms in the pyrrolidine ring is disordered over two sites, with a refined occupany ratio of 0.670 (3):0.330 (3). An intramolecular $O-H \cdots N$ hydrogen bond generates an S(6) ring. In the crystal structure, inversion dimers linked by pairs of C-H···O hydrogen bonds generate $R_2^2(18)$ loops within sheets of molecules lying parallel to the bc plane.

Related literature

For the details of cycloaddition reactions, see: Padwa (1984); Grigg & Sridharan (1993); Monlineux (1987). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

[‡] Additional correspondence author, e-mail: ohasnah@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

Ν

h

$C_{35}H_{30}N_2O_2$	V = 2626.2 (8) Å ³
$A_r = 510.61$	Z = 4
Aonoclinic, $P2_1/c$	Mo $K\alpha$ radiation
= 11.2264 (19) Å	$\mu = 0.08 \text{ mm}^{-1}$
= 15.600 (3) Å	$T = 100 { m K}$
= 15.031 (3) Å	$0.50 \times 0.39 \times 0.12 \text{ mm}$
$B = 93.927 \ (5)^{\circ}$	

Data collection

Bruker APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min}=0.961,\;T_{\rm max}=0.991$

Refinement

D-

O2-

C35

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture o
$wR(F^2) = 0.145$	independent and constrained
S = 1.10	refinement
11860 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
366 parameters	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A,	°).
---------------	----------	-----	-----

$H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$-H1O2\cdots N2 -H35A\cdots O2^{i}$	0.877 (18)	1.942 (18)	2.6134 (11)	132.2 (15)
	0.93	2.54	3.3159 (13)	142

Symmetry code: (i) -x, -y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under a University Research Grant (1001/PKIMIA/811133) and RSK thanks Universiti Sains Malaysia for the award of postdoctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/ 811160). MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5701).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Grigg, R. & Sridharan, V. (1993). In Advances in Cycloaddition, edited by D. P. Curran, p. 161. London: Jai Press.
- Monlineux, R. J. (1987). Alkaloids: Chemical and Biological Perspective, edited by S. W. Pelletier, ch. 1. New York: Wiley.
- Padwa, A. (1984). Editor. 1,3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o3045 [doi:10.1107/S1600536810043874]

11-[(*E*)-Benzylidene]-14-hydroxy-8-phenyl-3,13diazaheptacyclo[13.7.1.1^{9,13}.0^{2,9}.0^{2,14}.0^{3,7}.0^{19,23}]tetracosa-1(22),15,17,19(23),20-pentaen-10-one

R. S. Kumar, H. Osman, A. S. Abdul Rahim, M. Hemamalini and H.-K. Fun

Comment

The intermolecular [3+2]-cycloaddition of azomethine ylides with olefinic dipolarophiles affords a number of novel heterocyclic scaffolds which are useful for the creation of diverse chemical libraries of drug-like molecules for biological screening (Padwa, 1984; Grigg & Sridharan, 1993). Functionalized pyrrolizidines are the central skeleton for numerous alkaloids and constitute classes of compounds with significant biological activity (Monlineux, 1987). In view of the biological significance of pyrrolizidines, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [Q = 0.6060 (8) Å, θ = 141.15 (8)°, φ = 236.37 (12)°; Cremer & Pople, 1975]. The pyrrolidine ring, one of the C atom (C26) disordered over two sites with a refined occupancy ratio of 0.670 (3):0.330 (3). The major (N2/C25/C26A/C27/C28) and minor (N2/C25/C26B/C27/C28) disordered pyrrolidine rings adopt the same conformation, that is the envelope conformation; puckering parameters Q(2) = 0.3547 (12) Å, φ = 257.52 (15)° for major disordered component and Q(2) = 0.3237 (17) Å, φ = 67.7 (2)° for minor disordered component. The naphthalene (C14–22/24) ring makes dihedral angles of 24.56 (3)° and 36.13 4)° with the terminal phenyl (C1–C6)/(C30–C35) rings. The dihedral angle between the two terminal phenyl rings (C1–C6) and (C30–C35) is 55.27 (5)°.

In the crystal packing (Fig. 2), adjacent molecules are connected by intramolecular O2—H1O2···N2 and intermolecular C35—H35A···O2 (Table 1) hydrogen bonds, forming dimers lying on sheets parallel to the *bc* plane.

Experimental

A mixture of 3,5-bis[(*E*)-phenylmethylidene]tetrahydro-4(1*H*)-pyridinone (0.100 g, 0.363 mmol), acenaphthenequinone (0.066 g, 0.363 mmol) and proline (0.042 g, 0.363 mmol) were dissolved in methanol (5 ml) and refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to afford the product which was recrystallised from ethyl acetate to reveal the title compound as colourless plates.

Refinement

The hydroxyl H atom H1O2 was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.93-0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. One of the C atom (C26) of the pyrrolidine ring and the associated H atoms H25A, H25B, H26A, H26B, H27A and H27B disordered over two sites with a refined occupancy ratio of 0.670 (3):0.330 (3).

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids (H atoms are omitted for clarity). Dotted lines represents the disorder component.

Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms are not involving the hydrogen bond interactions are omitted for clarity.

11-[(*E*)-Benzylidene]-14-hydroxy-8-phenyl-3,13- diazaheptacyclo[13.7.1.1^{9,13}.0^{2,9}.0^{2,14}.0^{3,7}.0^{19,23}]tetracosa-1(22),15,17,19 (23),20-pentaen-10-one

F(000) = 1080

 $\theta = 2.7 - 35.4^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K

Plate, colourless

 $0.50\times0.39\times0.12~mm$

 $D_{\rm x} = 1.291 {\rm Mg m}^{-3}$

Mo Ka radiation, $\lambda = 0.71073$ Å

Cell parameters from 9930 reflections

Crystal data

C₃₅H₃₀N₂O₂ $M_r = 510.61$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.2264 (19) Å b = 15.600 (3) Å c = 15.031 (3) Å $\beta = 93.927$ (5)° V = 2626.2 (8) Å³ Z = 4

Data collection

Duid concenton	
Bruker APEXII DUO CCD diffractometer	11860 independent reflections
Radiation source: fine-focus sealed tube	9771 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
φ and ω scans	$\theta_{\text{max}} = 35.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2009)	$h = -18 \rightarrow 17$
$T_{\min} = 0.961, \ T_{\max} = 0.991$	$k = -25 \rightarrow 25$
44214 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.145$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.10	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0795P)^{2} + 0.4943P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
11860 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
366 parameters	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

				-	-	
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)	
01	-0.17017 (5)	0.82679 (4)	1.03805 (4)	0.01641 (11)		
02	0.08100 (6)	0.56861 (4)	0.87384 (4)	0.01734 (11)		
N1	0.08145 (6)	0.63805 (4)	1.01254 (4)	0.01357 (11)		
N2	-0.13097 (6)	0.63195 (4)	0.83198 (4)	0.01472 (12)		
C1	0.22693 (8)	0.98132 (6)	1.04040 (7)	0.02372 (17)		
H1A	0.1715	1.0100	1.0024	0.028*		
C2	0.34217 (9)	1.01357 (7)	1.05405 (8)	0.0296 (2)		
H2A	0.3638	1.0632	1.0249	0.035*		
C3	0.42518 (9)	0.97128 (8)	1.11159 (8)	0.0305 (2)		
H3A	0.5029	0.9919	1.1199	0.037*		
C4	0.39160 (9)	0.89812 (7)	1.15656 (7)	0.02777 (19)		
H4A	0.4465	0.8707	1.1960	0.033*		
C5	0.27640 (8)	0.86573 (6)	1.14284 (6)	0.02156 (16)		
H5A	0.2545	0.8170	1.1734	0.026*		
C6	0.19310 (7)	0.90631 (5)	1.08312 (5)	0.01729 (14)		
C7	0.07160 (7)	0.87336 (5)	1.06380 (5)	0.01624 (13)		
H7A	0.0115	0.9142	1.0555	0.019*		
C8	0.03709 (7)	0.79064 (5)	1.05664 (5)	0.01353 (12)		
C9	-0.09132 (7)	0.77452 (5)	1.02769 (4)	0.01271 (12)		
C10	-0.11593 (6)	0.68998 (5)	0.98022 (4)	0.01195 (12)		
C11	-0.04233 (7)	0.61895 (5)	1.03138 (5)	0.01437 (13)		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11A	-0.0526	0.6218	1.0949	0.017*	
H11B	-0.0658	0.5625	1.0097	0.017*	
C12	0.12122 (7)	0.71385 (5)	1.06502 (5)	0.01484 (13)	
H12A	0.1987	0.7314	1.0466	0.018*	
H12B	0.1314	0.6975	1.1273	0.018*	
C13	-0.05607 (6)	0.69047 (5)	0.88921 (4)	0.01160 (12)	
C14	-0.02779 (7)	0.77725 (5)	0.85018 (4)	0.01251 (12)	
C15	-0.09918 (7)	0.84537 (5)	0.82280 (5)	0.01555 (13)	
H15A	-0.1814	0.8428	0.8269	0.019*	
C16	-0.04540 (8)	0.91968 (5)	0.78807 (5)	0.01880 (14)	
H16A	-0.0936	0.9656	0.7692	0.023*	
C17	0.07616 (8)	0.92554 (5)	0.78155 (6)	0.02024 (15)	
H17A	0.1085	0.9744	0.7573	0.024*	
C18	0.15253 (8)	0.85727 (5)	0.81173 (5)	0.01741 (14)	
C19	0.27885 (8)	0.85440 (6)	0.81185 (6)	0.02362 (17)	
H19A	0.3199	0.9005	0.7894	0.028*	
C20	0.34140 (8)	0.78384 (7)	0.84497 (7)	0.02464 (17)	
H20A	0.4241	0.7835	0.8440	0.030*	
C21	0.28357 (7)	0.71167 (6)	0.88052 (6)	0.01966 (15)	
H21A	0.3274	0.6650	0.9032	0.024*	
C22	0.16109 (7)	0.71277 (5)	0.88051 (5)	0.01407 (12)	
C23	0.07360 (6)	0.64942 (5)	0.91446 (5)	0.01248 (12)	
C24	0.09706 (7)	0.78439 (5)	0.84559 (5)	0.01361 (12)	
C25	-0.16597 (7)	0.65570 (5)	0.73850 (5)	0.01698 (14)	
H25A	-0.1511	0.6088	0.6984	0.020*	0.670 (3)
H25B	-0.1220	0.7057	0.7207	0.020*	0.670 (3)
H25C	-0.1085	0.6350	0.6992	0.020*	0.330 (3)
H25D	-0.1727	0.7168	0.7321	0.020*	0.330 (3)
C26A	-0.29771 (12)	0.67498 (9)	0.73760 (9)	0.0215 (3)	0.670 (3)
H26A	-0.3112	0.7338	0.7553	0.026*	0.670 (3)
H26B	-0.3366	0.6655	0.6788	0.026*	0.670 (3)
C26B	-0.2896 (2)	0.61090 (17)	0.71830 (17)	0.0182 (6)	0.330 (3)
H26C	-0.3382	0.6421	0.6734	0.022*	0.330 (3)
H26D	-0.2796	0.5524	0.6982	0.022*	0.330 (3)
C27	-0.34291 (9)	0.61299 (8)	0.80440 (6)	0.02674 (19)	
H27A	-0.3591	0.5573	0.7775	0.032*	0.670 (3)
H27B	-0.4152	0.6343	0.8286	0.032*	0.670 (3)
H27C	-0.3963	0.5654	0.8092	0.032*	0.330 (3)
H27D	-0.3870	0.6651	0.8107	0.032*	0.330 (3)
C28	-0.24037 (8)	0.60765 (6)	0.87702 (5)	0.01829 (14)	
H28A	-0.2329	0.5491	0.9003	0.022*	
C29	-0.24766 (7)	0.67195 (5)	0.95408 (5)	0.01499 (13)	
H29A	-0.2825	0.7249	0.9287	0.018*	
C30	-0.32410 (7)	0.64389 (6)	1.02785 (6)	0.01837 (14)	
C31	-0.41977 (9)	0.69454 (7)	1.04970 (9)	0.0308 (2)	
H31A	-0.4363	0.7452	1.0186	0.037*	
C32	-0.49117 (13)	0.67017 (9)	1.11779 (12)	0.0489 (4)	
H32A	-0.5564	0.7036	1.1306	0.059*	
C33	-0.46481 (14)	0.59586 (9)	1.16659 (11)	0.0487 (4)	

H33A	-0.5104	0.5809	1.2136	0.058*
C34	-0.37055 (11)	0.54436 (8)	1.14494 (8)	0.0341 (2)
H34A	-0.3530	0.4945	1.1771	0.041*
C35	-0.30215 (8)	0.56737 (6)	1.07490 (6)	0.02335 (17)
H35A	-0.2410	0.5314	1.0591	0.028*
H1O2	0.0112 (16)	0.5609 (11)	0.8451 (11)	0.041 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0155 (2)	0.0171 (3)	0.0168 (2)	0.0037 (2)	0.00198 (18)	-0.00054 (19)
02	0.0203 (3)	0.0111 (2)	0.0206 (2)	0.0022 (2)	0.0013 (2)	-0.00293 (19)
N1	0.0143 (3)	0.0133 (3)	0.0130 (2)	0.0012 (2)	0.00077 (19)	0.0022 (2)
N2	0.0183 (3)	0.0137 (3)	0.0118 (2)	-0.0034 (2)	-0.0016 (2)	0.0009 (2)
C1	0.0191 (3)	0.0191 (4)	0.0326 (4)	-0.0010 (3)	-0.0010 (3)	0.0005 (3)
C2	0.0227 (4)	0.0256 (4)	0.0404 (5)	-0.0068 (3)	0.0019 (4)	-0.0011 (4)
C3	0.0177 (4)	0.0324 (5)	0.0409 (5)	-0.0049 (4)	-0.0014 (3)	-0.0099 (4)
C4	0.0200 (4)	0.0298 (5)	0.0321 (4)	0.0006 (3)	-0.0086 (3)	-0.0081 (4)
C5	0.0203 (4)	0.0218 (4)	0.0217 (3)	0.0003 (3)	-0.0058 (3)	-0.0034 (3)
C6	0.0152 (3)	0.0164 (3)	0.0200 (3)	0.0005 (3)	-0.0006 (2)	-0.0036 (3)
C7	0.0147 (3)	0.0164 (3)	0.0175 (3)	0.0013 (2)	-0.0001 (2)	-0.0020 (2)
C8	0.0137 (3)	0.0159 (3)	0.0110 (2)	0.0015 (2)	0.0001 (2)	-0.0005 (2)
C9	0.0142 (3)	0.0141 (3)	0.0098 (2)	0.0008 (2)	0.0010 (2)	0.0013 (2)
C10	0.0121 (3)	0.0125 (3)	0.0114 (2)	0.0001 (2)	0.0016 (2)	0.0025 (2)
C11	0.0151 (3)	0.0142 (3)	0.0140 (3)	0.0013 (2)	0.0019 (2)	0.0043 (2)
C12	0.0151 (3)	0.0161 (3)	0.0130 (3)	0.0022 (2)	-0.0015 (2)	0.0004 (2)
C13	0.0136 (3)	0.0103 (3)	0.0109 (2)	-0.0005 (2)	0.0008 (2)	0.0011 (2)
C14	0.0163 (3)	0.0108 (3)	0.0105 (2)	-0.0006 (2)	0.0017 (2)	0.0011 (2)
C15	0.0196 (3)	0.0126 (3)	0.0145 (3)	0.0010 (3)	0.0015 (2)	0.0025 (2)
C16	0.0274 (4)	0.0122 (3)	0.0170 (3)	0.0005 (3)	0.0023 (3)	0.0032 (2)
C17	0.0283 (4)	0.0135 (3)	0.0193 (3)	-0.0046 (3)	0.0044 (3)	0.0032 (3)
C18	0.0217 (3)	0.0147 (3)	0.0163 (3)	-0.0046 (3)	0.0048 (3)	0.0007 (2)
C19	0.0218 (4)	0.0227 (4)	0.0273 (4)	-0.0073 (3)	0.0087 (3)	0.0021 (3)
C20	0.0174 (3)	0.0276 (4)	0.0299 (4)	-0.0039 (3)	0.0080 (3)	0.0006 (3)
C21	0.0154 (3)	0.0216 (4)	0.0224 (3)	0.0003 (3)	0.0048 (3)	0.0000 (3)
C22	0.0149 (3)	0.0139 (3)	0.0137 (3)	-0.0007 (2)	0.0033 (2)	-0.0005 (2)
C23	0.0139 (3)	0.0107 (3)	0.0130 (3)	0.0011 (2)	0.0017 (2)	0.0004 (2)
C24	0.0167 (3)	0.0127 (3)	0.0117 (3)	-0.0017 (2)	0.0033 (2)	0.0001 (2)
C25	0.0201 (3)	0.0179 (3)	0.0125 (3)	-0.0013 (3)	-0.0019 (2)	0.0005 (2)
C26A	0.0201 (6)	0.0247 (6)	0.0188 (5)	0.0008 (5)	-0.0056 (4)	0.0012 (4)
C26B	0.0161 (10)	0.0180 (11)	0.0195 (10)	-0.0012 (8)	-0.0047 (8)	-0.0021 (8)
C27	0.0202 (4)	0.0373 (5)	0.0221 (4)	-0.0118 (4)	-0.0034 (3)	-0.0006 (3)
C28	0.0199 (3)	0.0182 (3)	0.0166 (3)	-0.0075 (3)	-0.0004 (2)	0.0017 (3)
C29	0.0131 (3)	0.0144 (3)	0.0173 (3)	-0.0014 (2)	0.0004 (2)	0.0038 (2)
C30	0.0142 (3)	0.0175 (3)	0.0240 (3)	-0.0006 (3)	0.0051 (3)	0.0033 (3)
C31	0.0219 (4)	0.0220 (4)	0.0503 (6)	0.0045 (3)	0.0163 (4)	0.0079 (4)
C32	0.0400 (6)	0.0308 (6)	0.0813 (10)	0.0099 (5)	0.0427 (7)	0.0110 (6)
C33	0.0506 (7)	0.0319 (6)	0.0694 (9)	0.0048 (5)	0.0468 (7)	0.0116 (6)

C34	0.0356 (5)	0.0275 (5)	0.0420 (5)	0.0024 (4)	0.0236 (5)	0.0128 (4)
C35	0.0209 (4)	0.0215 (4)	0.0291 (4)	0.0019 (3)	0.0114 (3)	0.0082 (3)
Geometric parar	neters (Å, °)					
O1—C9		1.2213 (9)	C18–	C19	1.4	188 (13)
O2—C23		1.4056 (9)	C19–	-C20	1.3	801 (15)
02—H1O2		0.877 (18)	C19–	-H19A	0.9	300
N1-C11		1.4677 (10)	C20–	C21	1.4	222 (13)
N1-C12		1.4737 (10)	C20–	-H20A	0.9	0300
N1—C23		1.4814 (10)	C21–	C22	1.3	751 (11)
N2—C13		1.4768 (10)	C21–	-H21A	0.9	9300
N2—C25		1.4800 (10)	C22–	C24	1.4	103 (11)
N2—C28		1.4914 (11)	C22–	C23	1.5	5068 (11)
C1—C2		1.3901 (13)	C25–	C26A	1.5	5083 (16)
C1—C6		1.3998 (13)	C25–	C26B	1.5	565 (3)
C1—H1A		0.9300	C25–	-H25A	0.9	0700
C2—C3		1.3932 (16)	C25–	–H25B	0.9	0700
C2—H2A		0.9300	C25–	-H25C	0.9	0600
C3—C4		1.3917 (17)	C25–	-H25D	0.9	9600
С3—НЗА		0.9300	C26A	—C27	1.5	5068 (17)
C4—C5		1.3906 (13)	C26A	—H25D	1.5	542
C4—H4A		0.9300	C26A	—Н26А	0.9	9700
C5—C6		1.4022 (12)	C26A	—Н26В	0.9	9700
C5—H5A		0.9300	C26A	—H27D	1.5	5449
С6—С7		1.4679 (11)	C26B	-C27	1.4	63 (3)
С7—С8		1.3497 (12)	C26B	—Н26С	0.9	9700
C7—H7A		0.9300	C26B	-H26D	0.9	9700
С8—С9		1.4982 (11)	C27–	C28	1.5	5334 (12)
C8—C12		1.5253 (11)	C27–	–H27A	0.9	9700
C9—C10		1.5158 (11)	C27–	–H27B	0.9	0700
C10—C29		1.5299 (11)	C27–	-H27C	0.9	600
C10-C11		1.5540 (10)	C27–	–H27D	0.9	0600
C10—C13		1.5650 (10)	C28–	C29	1.5	5387 (12)
C11—H11A		0.9700	C28–	-H28A	0.9	9800
C11—H11B		0.9700	C29–	-C30	1.5	5125 (11)
C12—H12A		0.9700	C29–	-H29A	0.9	9800
C12—H12B		0.9700	C30–	-C31	1.3	907 (13)
C13—C14		1.5178 (10)	C30–	-C35	1.4	009 (12)
C13—C23		1.6117 (11)	C31–	-C32	1.3	953 (16)
C14—C15		1.3769 (11)	C31–	-H31A	0.9	9300
C14—C24		1.4124 (11)	C32–	-C33	1.3	93 (2)
C15—C16		1.4226 (12)	C32–	-H32A	0.9	9300
C15—H15A		0.9300	C33–	C34	1.3	8850 (17)
C16—C17		1.3779 (13)	C33–	-H33A	0.9	9300
C16—H16A		0.9300	C34–	-C35	1.3	918 (13)
C17—C18		1.4218 (13)	C34–	–H34A	0.9	9300
C17—H17A		0.9300	C35–	–H35A	0.9	9300
C18—C24		1.4082 (11)				

C23—O2—H1O2	105.1 (11)	N2-C25-C26A	104.76 (7)
C11—N1—C12	108.40 (6)	N2-C25-C26B	104.28 (11)
C11—N1—C23	102.93 (6)	C26A—C25—C26B	39.77 (11)
C12—N1—C23	115.58 (6)	N2—C25—H25A	110.8
C13—N2—C25	120.12 (6)	С26А—С25—Н25А	110.8
C13—N2—C28	110.27 (6)	C26B—C25—H25A	74.3
C25—N2—C28	108.73 (6)	N2—C25—H25B	110.8
C2—C1—C6	120.92 (9)	С26А—С25—Н25В	110.8
C2—C1—H1A	119.5	C26B—C25—H25B	140.1
C6—C1—H1A	119.5	H25A—C25—H25B	108.9
C1—C2—C3	119.76 (10)	N2—C25—H25C	110.8
C1—C2—H2A	120.1	C26A—C25—H25C	139.6
C3—C2—H2A	120.1	C26B—C25—H25C	110.8
C4—C3—C2	119.86 (9)	H25A—C25—H25C	38.1
С4—С3—НЗА	120.1	H25B—C25—H25C	74.0
С2—С3—НЗА	120.1	N2—C25—H25D	110.9
C5—C4—C3	120.40 (9)	C26A—C25—H25D	74.4
C5—C4—H4A	119.8	C26B—C25—H25D	111.2
C3—C4—H4A	119.8	H25A—C25—H25D	134.7
C4—C5—C6	120.24 (9)	H25B—C25—H25D	38.2
C4—C5—H5A	119.9	H25C—C25—H25D	108.9
С6—С5—Н5А	119.9	C27—C26A—C25	103.94 (9)
C1—C6—C5	118.76 (8)	C27—C26A—H25D	130.6
C1—C6—C7	118.66 (8)	C25—C26A—H25D	36.5
C5—C6—C7	122.58 (8)	C27—C26A—H26A	111.0
C8—C7—C6	127.48 (7)	С25—С26А—Н26А	111.0
С8—С7—Н7А	116.3	H25D—C26A—H26A	77.1
С6—С7—Н7А	116.3	С27—С26А—Н26В	111.0
C7—C8—C9	116.67 (7)	С25—С26А—Н26В	111.0
C7—C8—C12	124.86 (7)	H25D—C26A—H26B	111.6
C9—C8—C12	118.05 (7)	H26A—C26A—H26B	109.0
01—C9—C8	122.84 (7)	C27—C26A—H27D	36.6
O1—C9—C10	122.04 (7)	C25—C26A—H27D	131.1
C8—C9—C10	115.05 (6)	H25D—C26A—H27D	135.4
C9—C10—C29	115.01 (6)	H26A—C26A—H27D	77.2
C9—C10—C11	108.29 (6)	H26B—C26A—H27D	111.0
C29—C10—C11	117.89 (6)	C27—C26B—C25	103.27 (15)
C9—C10—C13	109.39 (6)	С27—С26В—Н26С	111.1
C29—C10—C13	103.99 (6)	C25—C26B—H26C	111.1
C11—C10—C13	100.97 (6)	C27—C26B—H26D	111.1
N1—C11—C10	103.78 (6)	C25—C26B—H26D	111.1
N1—C11—H11A	111.0	H26C—C26B—H26D	109.1
C10—C11—H11A	111.0	C26B—C27—C26A	41.24 (12)
N1—C11—H11B	111.0	C26B—C27—C28	107.20 (12)
C10—C11—H11B	111.0	C26A—C27—C28	103.80 (8)
H11A—C11—H11B	109.0	С26В—С27—Н27А	71.8
N1—C12—C8	115.01 (6)	С26А—С27—Н27А	111.0
N1—C12—H12A	108.5	С28—С27—Н27А	111.0
C8—C12—H12A	108.5	С26В—С27—Н27В	137.9

N1—C12—H12B	108.5	С26А—С27—Н27В	111.0
C8—C12—H12B	108.5	С28—С27—Н27В	111.0
H12A—C12—H12B	107.5	H27A—C27—H27B	109.0
N2—C13—C14	116.88 (6)	С26В—С27—Н27С	110.1
N2—C13—C10	104.16 (6)	С26А—С27—Н27С	141.9
C14—C13—C10	117.12 (6)	С28—С27—Н27С	110.3
N2—C13—C23	111.14 (6)	H27A—C27—H27C	40.5
C14—C13—C23	103.65 (6)	H27B—C27—H27C	72.2
C10—C13—C23	103.13 (5)	С26В—С27—Н27D	110.5
C15—C14—C24	118.93 (7)	C26A—C27—H27D	73.8
C15-C14-C13	132.16 (7)	C28—C27—H27D	110.1
C24—C14—C13	108.89 (6)	H27A—C27—H27D	135.7
C14—C15—C16	119.05 (8)	H27B—C27—H27D	39.0
C14—C15—H15A	120.5	H27C—C27—H27D	108.5
C16—C15—H15A	120.5	N2-C28-C27	105.34 (7)
C17—C16—C15	121.83 (8)	N2-C28-C29	105.30 (6)
C17—C16—H16A	119.1	C27—C28—C29	115.11 (8)
C15-C16-H16A	119.1	N2—C28—H28A	110.3
C16—C17—C18	120.41 (7)	C27—C28—H28A	110.3
C16—C17—H17A	119.8	C29—C28—H28A	110.3
C18—C17—H17A	119.8	C30—C29—C10	116.86 (6)
C24—C18—C19	116.15 (8)	C30—C29—C28	115.17 (7)
C24—C18—C17	116.62 (8)	C10—C29—C28	102.30 (6)
C19—C18—C17	127.22 (8)	С30—С29—Н29А	107.3
C20-C19-C18	120.63 (8)	C10—C29—H29A	107.3
C20-C19-H19A	119.7	C28—C29—H29A	107.3
C18—C19—H19A	119.7	C31—C30—C35	118.49 (8)
C19—C20—C21	122.20 (8)	C31—C30—C29	119.66 (8)
C19—C20—H20A	118.9	C35—C30—C29	121.85 (7)
C21—C20—H20A	118.9	C30—C31—C32	120.68 (10)
C22—C21—C20	118.18 (8)	C30-C31-H31A	119.7
C22—C21—H21A	120.9	C32—C31—H31A	119.7
C20—C21—H21A	120.9	C33—C32—C31	120.06 (10)
C21—C22—C24	119.61 (7)	С33—С32—Н32А	120.0
C21—C22—C23	131.81 (7)	C31—C32—H32A	120.0
C24—C22—C23	108.56 (6)	C34—C33—C32	119.82 (10)
O2—C23—N1	108.88 (6)	С34—С33—Н33А	120.1
O2—C23—C22	112.45 (6)	С32—С33—Н33А	120.1
N1—C23—C22	114.82 (6)	C33—C34—C35	119.88 (10)
O2—C23—C13	109.47 (6)	С33—С34—Н34А	120.1
N1—C23—C13	105.85 (5)	C35—C34—H34A	120.1
C22—C23—C13	105.00 (6)	C34—C35—C30	120.96 (9)
C18—C24—C22	123.19 (7)	С34—С35—Н35А	119.5
C18—C24—C14	123.10 (7)	С30—С35—Н35А	119.5
C22—C24—C14	113.68 (7)		
C6—C1—C2—C3	-0.56 (16)	C21—C22—C23—O2	-59.02 (11)
C1—C2—C3—C4	-1.41 (17)	C24—C22—C23—O2	122.53 (7)
C2—C3—C4—C5	1.53 (16)	C21—C22—C23—N1	66.21 (11)
C3—C4—C5—C6	0.32 (15)	C24—C22—C23—N1	-112.24 (7)

C2—C1—C6—C5	2.38 (14)	C21—C22—C23—C13	-177.98 (8)
C2-C1-C6-C7	-177.78 (9)	C24—C22—C23—C13	3.58 (7)
C4—C5—C6—C1	-2.26 (13)	N2—C13—C23—O2	0.75 (8)
C4—C5—C6—C7	177.92 (8)	C14—C13—C23—O2	-125.60 (6)
C1—C6—C7—C8	143.04 (9)	C10—C13—C23—O2	111.82 (6)
C5—C6—C7—C8	-37.13 (13)	N2-C13-C23-N1	-116.46 (6)
C6—C7—C8—C9	-174.29 (7)	C14—C13—C23—N1	117.19 (6)
C6—C7—C8—C12	-1.87 (13)	C10-C13-C23-N1	-5.38 (7)
C7—C8—C9—O1	-24.09 (10)	N2—C13—C23—C22	121.68 (6)
C12—C8—C9—O1	162.95 (7)	C14—C13—C23—C22	-4.67 (7)
C7—C8—C9—C10	153.03 (7)	C10-C13-C23-C22	-127.25 (6)
C12—C8—C9—C10	-19.93 (9)	C19—C18—C24—C22	1.84 (11)
O1—C9—C10—C29	-5.24 (10)	C17—C18—C24—C22	-177.97 (7)
C8—C9—C10—C29	177.62 (6)	C19—C18—C24—C14	179.91 (7)
O1—C9—C10—C11	-139.50(7)	C17—C18—C24—C14	0.10 (11)
C8—C9—C10—C11	43.36 (8)	C21—C22—C24—C18	-1.44 (11)
O1—C9—C10—C13	111.30 (8)	C23—C22—C24—C18	177.23 (7)
C8—C9—C10—C13	-65.84 (7)	C21—C22—C24—C14	-179.67 (7)
C12—N1—C11—C10	74.18 (7)	C23—C22—C24—C14	-1.01 (9)
C23—N1—C11—C10	-48.73 (7)	C15—C14—C24—C18	-1.93 (11)
C9—C10—C11—N1	-70.69 (7)	C13—C14—C24—C18	179.51 (7)
C29—C10—C11—N1	156.57 (6)	C15—C14—C24—C22	176.31 (7)
C13—C10—C11—N1	44.16 (7)	C13—C14—C24—C22	-2.25 (8)
C11—N1—C12—C8	-50.47 (8)	C13—N2—C25—C26A	-109.04 (9)
C23—N1—C12—C8	64.41 (8)	C28—N2—C25—C26A	19.26 (10)
C7—C8—C12—N1	-149.86(7)	C13—N2—C25—C26B	-150.18 (12)
C9—C8—C12—N1	22.46 (9)	C28—N2—C25—C26B	-21.88 (13)
C25—N2—C13—C14	5.38 (10)	N2—C25—C26A—C27	-34.34 (11)
C28—N2—C13—C14	-122.22 (7)	C26B—C25—C26A—C27	60.38 (17)
C25—N2—C13—C10	136.30 (7)	N2—C25—C26B—C27	32.81 (17)
C28—N2—C13—C10	8.70 (8)	C26A—C25—C26B—C27	-63.23 (16)
C25—N2—C13—C23	-113.28 (7)	C25—C26B—C27—C26A	60.14 (14)
C28—N2—C13—C23	119.12 (7)	C25—C26B—C27—C28	-31.32 (17)
C9—C10—C13—N2	-152.17 (6)	C25—C26A—C27—C26B	-64.47 (16)
C29—C10—C13—N2	-28.84 (7)	C25—C26A—C27—C28	36.01 (11)
C11—C10—C13—N2	93.80 (6)	C13—N2—C28—C27	136.76 (7)
C9-C10-C13-C14	-21.40 (8)	C25—N2—C28—C27	3.12 (9)
C29—C10—C13—C14	101.93 (7)	C13—N2—C28—C29	14.67 (8)
C11—C10—C13—C14	-135.42 (6)	C25—N2—C28—C29	-118.97 (7)
C9—C10—C13—C23	91.67 (6)	C26B—C27—C28—N2	18.50 (14)
C29—C10—C13—C23	-145.00 (6)	C26A—C27—C28—N2	-24.23 (11)
C11—C10—C13—C23	-22.35 (7)	C26B—C27—C28—C29	134.01 (13)
N2-C13-C14-C15	63.31 (10)	C26A—C27—C28—C29	91.28 (10)
C10-C13-C14-C15	-61.28 (10)	C9—C10—C29—C30	-76.41 (8)
C23—C13—C14—C15	-174.06 (8)	C11—C10—C29—C30	53.29 (9)
N2-C13-C14-C24	-118.39 (7)	C13—C10—C29—C30	164.01 (7)
C10-C13-C14-C24	117.01 (7)	C9—C10—C29—C28	156.84 (6)
C23—C13—C14—C24	4.23 (7)	C11—C10—C29—C28	-73.46 (8)
C24—C14—C15—C16	2.02 (11)	C13—C10—C29—C28	37.26 (7)

C13-C14-C15-C16	-179.82 (7)	N2-C28-C29-C30	-159.99 (6)
C14—C15—C16—C17	-0.37 (12)	C27—C28—C29—C30	84.47 (9)
C15-C16-C17-C18	-1.50 (13)	N2-C28-C29-C10	-32.16 (7)
C16—C17—C18—C24	1.59 (12)	C27—C28—C29—C10	-147.69 (7)
C16—C17—C18—C19	-178.19 (8)	C10-C29-C30-C31	117.65 (10)
C24—C18—C19—C20	-0.95 (13)	C28—C29—C30—C31	-122.23 (10)
C17—C18—C19—C20	178.83 (9)	C10-C29-C30-C35	-62.92 (11)
C18—C19—C20—C21	-0.31 (15)	C28—C29—C30—C35	57.20 (11)
C19—C20—C21—C22	0.76 (14)	C35—C30—C31—C32	0.86 (18)
C20—C21—C22—C24	0.09 (12)	C29—C30—C31—C32	-179.69 (12)
C20—C21—C22—C23	-178.21 (8)	C30-C31-C32-C33	2.0 (2)
C11—N1—C23—O2	-84.67 (7)	C31—C32—C33—C34	-2.7 (3)
C12—N1—C23—O2	157.36 (6)	C32—C33—C34—C35	0.4 (2)
C11—N1—C23—C22	148.26 (6)	C33—C34—C35—C30	2.5 (2)
C12—N1—C23—C22	30.29 (9)	C31—C30—C35—C34	-3.16 (16)
C11—N1—C23—C13	32.94 (7)	C29—C30—C35—C34	177.41 (10)
C12—N1—C23—C13	-85.03 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H1O2···N2	0.877 (18)	1.942 (18)	2.6134 (11)	132.2 (15)
C35—H35A···O2 ⁱ	0.93	2.54	3.3159 (13)	142
Symmetry codes: (i) $-x$, $-y+1$, $-z+2$.				

Fig. 1

